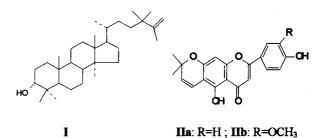
Phytochemical analysis of the leaves and stems of Paramignya monophylla Wight (Rutaceae)

IAN H. BOWEN AND YOGESHKUMAR N. PATEL

Institute of Pharmacy and Pharmacy Practice, School of Health Sciences, University of Sunderland, Sunderland SR1 3SD

The genus *Paramignya*, family Rutaceae, subfamily Aurantioideae, consists of fifteen species and two subspecies, scattered across S. E. Asia from India to Indonesia and the Philippines. The genus is difficult to distinguish from *Luvunga* [Swingle 1967]. Flavonoids were stated to be absent from *P. monophylla* [Grieve 1980] and *P. lobata*, included in a survey of Malaysian plants [Bowen 1978], was shown to contain steroidal or triterpenoid compounds but not alkaloids.


The air dried leaves and stems of *Paramignya monophylla* were extracted with petroleum and with chloroform. Both extracts showed a similar TLC profile.

The leaves yielded a steroidal compound, m.p. 165°, designated **PM1** whilst the stems additionally contained a compound **PM2**, crystallising as yellow needles m.p. 224-225°, which gave a positive Shinoda test [Geissman 1962], suggesting it was a flavonoid.

PM1 had IR and NMR spectra characteristic of a steroid. M^+ and accurate mass gave its molecular formula as $C_{32}H_{56}O$. IR data indicated OH (3400 cm⁻¹) and terminal methylene group (1640 cm⁻¹, 890 cm⁻¹). The NMR showed signals for eight C-methyls (δ 0.78 - 1.02), a vinylic methyl (δ 1.69), CHOH (OH at δ 1.47, D₂O exchangable, H at δ 3.74) and two proton doublet (δ 4.69, J = 13Hz).

The spectral data was remarkably similar to that for 24,24-dimethyl-lanosta-7,25-dien- 3α -ol from *Mallotus stenanthus* (Euphorbiaceae) [Pal 1975], except PM1 did not appear to have ring unsaturation at the 7,8 position. Hydrogenation of PM1 gave a compound C₃₂H₅₈O whose NMR lacked signals for the terminal methylene and vinylic protons The half-height width for the CHOH signal in the NMR (12Hz) suggested an equatorial OH [Chan 1973]. We therefore propose the structure 24,24-dimethyl-lanosta-25-en-3 β -ol (I) for compound PM1.

PM2 (M+ 366) had molecular formula $C_{21}H_{18}O_6$ and presence of phenolic OH supported by +ve ferric chloride test and UV and IR spectra. A strong absorption at 1640 cm⁻¹ indicated carbonyl. The NMR and MS data bore a strong resemblance to that for carpachromene (IIa), isolated from Atalantia ceylanica (Bowen 1987), supporting the linear pyranoflavone structure but with, in addition, a OCH₃ group resonating at δ 4.01. Comparison of NMR data with a catalogued range of flavonoids [Mabry 1970] supported a 4'hydroxy-3'-methoxy- substitution of the B-ring, and the structure of PM2 is therefore 4',5dihydroxy-3'-methoxy-6'',6''-dimethylpyrano (2",3":7,6)flavone or 3'-methoxycarpachromene (IIb).

References

Bowen, I.H. and Lewis, J.R. (1978). Planta Med., 129-134. Bowen, I.H. and Patel, Y.N. (1987). Planta Med., 73-75. Chan, W.S. and Hui, W.H. (1973). J.Chem.Soc., Perkin Trans.I, 490.

Geissman, T.A. (Ed.) (1962). The Chemistry of Flavonoid Compounds. Pergammon Press, Oxford.

Grieve, C.M. and Scora, R.W. (1980). Systematic Botany, 5:39-53.

Mabry, T.J., Markham, K.R. and Thomas, M.B. (1970). The Systematic Identification of Flavonoids. Springer-Verlag, New York.

Pal, R., Kulshreshtha, D.K. and Rastogi, R.P. (1975). Phytochemistry, 14: 2253-2255.

Swingle, W.T. and Reece, P.C. (1967). in: Weber, H.J. and Batchelor, L.D. (eds.) "The Citrus Industry". Vol.1, Univ. of California Press, Berkeley and Los Angeles, 190-430.